

Global annual and seasonal variation of CH₄ and CO from SCIAMACHY near-infrared spectra

A.M.S. Gloudemans, A.T.J. de Laat, M. van den Broek, H. Schrijver, S.Houweling, G.Lichtenberg, R. van Hees, I. Aben (SRON), J-F. Meirink (KNMI) contact: a gloudemans@sron.nl

Why measure CH, and CO with SCIAMACHY

-CH4 is an active greenhouse gas

-CO is a very important pollution tracer and influences the concentrations of greenhouse gases such as CH4 and CO2

-Their global distributions must be known to a high accuracy in order to understand their impact on atmospheric chemistry and

-The present global coverage of ground-based measurements is insufficient to accurately estimate their distributions.

Satellite measurements with their good

- -CH₄ and CO are measured in the near-infrared between 2265 and 2380 nm.
- The SCIAMACHY instrument is stable
- An ice layer appears to have built up over the near-infrared detectors. This has a significant effect on the retrieved CH4 and CO total column products.
- Careful monitoring of this ice layer has allowed the development of detailed corrections for this ice layer.
- This results in significant improvement of the accuracy of the retrieved CH4 and CO total columns.

Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY

Retrievals with (blue) and without (red) correction for ice layer compared to loss in total signal due to ice layer

A nice example is retrieval of CH₄ and CO₂ around 1.6 µm, which suffer from scattering effects, but CH./CO. helps to reduce this

